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Abstract—Principal Component Analysis (PCA) is a widely
used technique for dimensionality reduction in various problem
domains, including data compression, image processing, visu-
alization, exploratory data analysis, pattern recognition, time-
series prediction, and machine learning. Often, data is presented
in a correlated paired manner such that there exist observable
and correlated unobservable measurements. Unfortunately, tra-
ditional PCA techniques generally fail to optimally capture the
leverageable correlations between such paired data as it does
not yield a maximally correlated basis between the observable
and unobservable counterparts. This instead is the objective of
Canonical Correlation Analysis (and the more general Partial
Least Squares methods); however, such techniques are still
symmetric in maximizing correlation (covariance for PLSR) over
all choices of the basis for both datasets without differentiating
between observable and unobservable variables (except for the
regression phase of PLSR). Further, these methods deviate from
PCA’s formulation objective to minimize approximation error,
seeking instead to maximize correlation or covariance. While
these are sensible optimization objectives, they are not equivalent
to error minimization. We therefore introduce a new method
of leveraging PCA between paired datasets in a dependently
coupled manner, which is optimal with respect to approximation
error during training. We generate a dependently coupled paired
basis for which we relax orthogonality constraints in decomposing
unreliable unobservable measurements. In doing so, this allows
us to optimally capture the variations of the observable data
while conditionally minimizing the expected prediction error
for the unobservable component. We show preliminary results
that demonstrate improved learning of our proposed method
compared to that of traditional techniques.

Index Terms—Principal Component Analysis; Canonical Cor-
relation Analysis; Partial Least Squares; Segmentation; Shape
Analysis;

I. INTRODUCTION

Principal Component Analysis (PCA) [1] is an unsuper-
vised statistical technique primarily used for dimensionality
reduction [2] in various problem domains, including data
compression, image processing, visualization, exploratory data
analysis, pattern recognition, and time series prediction. It is
also very commonly used for small to medium-sized datasets
in machine learning for both dimensionality reduction and
developing predictive models.

The dimensionality of a dataset is related to the number
of features in each sample of a dataset. High-dimensional
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datasets with a large number of features, especially in the
field of Machine Learning, suffer from the problem of “Curse
of Dimensionality [3]”. In addition, overfitting often occurs
in high-dimensional datasets, leading to poor generalization
to examples beyond the training set. This motivates the use
of PCA for dimensionality reduction by compressing a set
of high-dimensional vectors into a set of lower-dimensional
vectors and then reconstructing the original set in machine
learning and related fields.

PCA summarizes the variation in potentially correlated mul-
tivariate attributes or features to a set of linearly uncorrelated
components, each of which is a particular linear combina-
tion of the original variables. The extracted non-correlated
components are called Principal Components (PC) and are
estimated from the eigenvectors of the covariance matrix of
the original variables. The PCA procedure uses an orthogonal
transformation, and the set of Principal Components are called
an orthogonal basis.

PCA can be used in several problem settings but broadly
for visualization, prediction, and inversion problems. Our
newly formulated model, which we call Dependently Coupled
Principal Component Analysis (DC-PCA), can be used in two
different ways: either for inversion or prediction. In this paper,
we focus on the use case for inversion problems.

In the inversion problem setting, PCA is used to extract a
set of orthogonal basis vectors that form our model, and a
linear combination of these basis vectors can be used to fit a
new unseen data sample. Depending on the problem at hand,
some form of fitting function or cost function can be used
to estimate the weights of the linear combination based on
observable features of the data. In [4]–[8], the authors used this
strategy for image segmentation in both 2D and 3D in various
domains. Over the years, several extensions of PCA have been
proposed and used for various tasks in computer vision. For
example, in [9], [10], the authors used a non-linear extension
called kernel PCA for incorporating non-linear shape priors for
segmentation tasks. In [11], the authors exploited Riemannian
geometry to develop a non-linear extension referred to as
Principal Geodesic Analysis.

A technique related to PCA is called Canonical Correlation
Analysis (CCA). In certain scenarios, we could have more than
one set of correlated samples. First introduced in [12], canon-
ical correlation analysis, together with its general framework
Partial Least Squares (PLS) [13], is a method that measures the
linear relationship between two multi-dimensional variables.
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The method seeks a pair of basis vectors such that the cor-
responding variables in these bases are maximally correlated.
It can be used for dimension reduction similar to PCA, but
unlike PCA, which seeks a basis that explains maximum
within-set variation, the goals of CCA and PLSR is to seek
a paired basis such that the correlation and covariance of the
corresponding variables are maximized, respectively. As for
calculation, all those methods can be formulated as solving
eigenvalue equations with slightly different matrix coefficients
[14]. Similar to PCA, many extensions, enhancements and
applications, [15]–[22] have been proposed and developed to
augment the basic CCA technique. A comprehensive review
of all these extensions is beyond the scope of this article.
Interested readers are referred to a recent tutorial [14] and the
references therein for a complete treatment of CCA.

A. Motivation for Dependently Coupled Principal Component
Analysis

We consider the scenario where we have a pair of correlated
datasets (X and Y ) at training time, neither of which will be
directly represented by test time measurements. However, we
expect that raw test time measurements will contain features
which allow us to invert a low-dimensional representation of
X by leveraging PCA style dimensionality reduction (i.e.,
estimate its expansion coefficients), but that either no features
(or only poor, unreliable features) will be available to invert
a low-dimensional representation of Y . We propose a novel
model named Dependently Coupled Principal Component
Analysis (DC-PCA) to address this class of bivariate inversion
problems where X is inverted from test time data, and where
Y is estimated from the low-dimensional inversion of X .
This proposed method is a special case, mathematically1,
of our more general formulation called Directionally Paired
PCA (DP-PCA), which is the subject of our concurrent paper
titled “Directionally Paired Principal Component Analysis for
Bivariate Estimation Problems”. It is important to emphasize
that we are considering the challenging class of inversion
problems from which dimensionality reduction is a crucial
ingredient, meaning that the inverted result from X will only
contain components within the low dimensional space learned
during training time, with no additional component to be
leveraged in the subsequent estimation of Y .

We call one set of samples observable (X) and the other
partially observable or completely unobservable (Y ), meaning
that one set has features which could be used for estimating the
weights of corresponding principal components during model
fitting, and the other set may or may not have any features that
can be used to estimate model weights. However, we assume
that the sets are correlated, and reconstructing one tells us
something about the other. In the case of both datasets being
observable, we could develop two independent PCA models
for each; but in that case, we ignore the correlation between the
two sets and perhaps adopt higher dimensional representations

1while the two papers share common mathematical formulation, the result-
ing algorithms and applications are completely different and hence treated in
two separate papers.

Fig. 1: Use cases of dimension reduction with PCA

than necessary. In such cases, there is a well-known version
of PCA called Joint (symmetrically paired) PCA, in which we
stack both sets of samples together and extract a single set of
Principal Components. This technique would force the model
to learn the correlations between the two sets while keeping
the dimensionality lower than the case of two independent
PCA models. In this case, the capacity of our model is split
between optimizing for the two sample sets. In case one of the
sample sets is observable and the other unobservable, we lose
the ability to reconstruct the observable data well while not
gaining much advantage in terms of reconstructing the other
unobservable set.

In the following sections, we present a formal description of
the existing PCA techniques, their failings in certain cases and
describe our new Dependently Coupled Principal Component
Analysis technique in more detail. We present a set of syn-
thetic experiments to illustrate the concepts and also show a
practical application on a challenging problem of Myocardial
Segmentation in medical imagery.

B. Use Case of PCA in Inversion Problems

We may roughly categorize the usage of dimensional reduc-
tion with PCA into three use cases: visualization, prediction,
and inversion, and summarize the major difference in Fig.
1. The visualization process takes a single step that reduces
the dimension of high-dimensional measurements X of data
to low-dimensional representations A which are feasible for
plotting. In the prediction problem, a basis U is learned during
training, which later supports transforming at test time mea-
surements of data Xtest to a low-dimensional subspace. When
it comes to the inversion problem, however, the test phase
starts from the low-dimensional representation, and the inverse
transform is performed to map it to the corresponding high-
dimensional measurements, which usually contains statistics of
interest (e.g., segmentation maps). In this research, we focus
on the inversion problem, which differs from the previous two
use cases in the following aspects.

One critical concept in the inversion problem is raw data
D, which are entities that can be quantified by various
measurements and statistics (e.g., the input high-dimensional
measurement of PCA). Although both the high-dimensional
measurement X and its low-dimensional representation A
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have fixed dimensions, the dimension of the raw data D
might not be fixed or even finite. The goal of the inversion
problem is to compute the high-dimensional measurement
X of the raw data D by leveraging the low-dimensional
representation A, because computing X directly from D is
extremely difficult and expensive. Unlike prediction problems
in statistics, the dimension M of measurement X in inversion
problems is much larger than the number of data samples2 N .
Consequently, direct regression analysis between the raw data
D and high-dimensional measurements X is infeasible and
subject to overfitting. Alternatively, it is possible to compute3

the low-dimensional representation A from the raw data D,
thus obtaining the high-dimensional measurements X via the
inverse PCA transform of A.

II. TRADITIONAL PCA FOR PAIRED DATASETS

In this section, we establish some notation and review
how traditional PCA would be applied in estimating coupled
variables in cases where both are observable from a set
of measurements (independent PCA) and where only one
is observable from the measurements (joint symmetrically
coupled PCA). In the subsequent section, we will develop
the Dependently Coupled Principal Component Analysis (DC-
PCA) methodology, optimized specifically for the latter case,
using the same notation presented in this background section.

A. Notation

Let us assume that an M ×N matrix X = [x1 x2 · · · xN ]
contains N data measurements represented as column vectors
in RM and that a K ×N matrix Y = [y1 y2 · · · yN ] contains
a different set of N individually paired data measurements
(representing a different entity as column vectors in RK . We
further assume that the mean of both sets of measurements
is zero (if not, the respective means should be pre-subtracted
from each xn and yn for n = 1, . . . , N .

B. Independent (Unpaired) Principal Component Analysis
Standard PCA, applied independently to each of these paired

sets (X and Y ), yields independent L-dimensionals subspaces
in RM and in RK that minimize the following mean squared
error (MSE):

ε(A,U,B, V ) =
1

N

N∑
n=1

∥∥∥∥∥∥∥∥∥∥
xn −

L∑
l=1

ulaln︸ ︷︷ ︸
Uan

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥
yn −

L∑
l=1

vlbln︸ ︷︷ ︸
V bn

∥∥∥∥∥∥∥∥∥∥

2

(1)
where the columns of M ×L matrices U = [u1 · · · uL] and
V = [v1 · · · vL] denote orthonormal bases of the optimal
r-dimensional subspaces and where the coefficients A =
[a1 · · · aN ], B = [b1 · · · bN ] with an = (a1n, . . . , aLn),
bn = (b1n, . . . , bLn) denote the r-dimensional vectors of
coefficients for the linear combinations in these bases of the
closest approximations to the measurements xn and yn in
each collected pair. Noting that the orthogonal projections of

2We may have only 10 dataset cube of size 1283 as training data.
3e.g., via minimizing an energy function which depends on the principal

components weighted by A

xn and yn yield the best approximations for a given choice
of subspaces U and V , we may eliminate the parameters
aln and bln from the optimization problem by substituting
aln = uT

l xn, bln = vT
l yn (more compactly an = UTxn,

bn = V Tyn or even more compactly A = UTX , B = V TY ).

ε∗(U, V ) =
1

N

N∑
n=1

∥∥∥∥∥xn −
L∑

l=1

ulu
T
l xn

∥∥∥∥∥
2

+

∥∥∥∥∥yn −
L∑

l=1

vlv
T
l yn

∥∥∥∥∥
2

(2)
Expanding the squared norms into their constituent inner

product terms (most of which vanish due to the orthonormality
of u1, . . . ,uL and v1, . . . ,vL) yields

ε∗ =
1

N

N∑
n=1

(
xT
nxn −

L∑
l=1

xT
nulu

T
l xn

)
+

1

N

N∑
n=1

(
yT
nyn −

L∑
l=1

yT
nvlv

T
l yn

)
(3)

From this, it is apparent that an equivalent optimization
problem for u1, . . . ,uL and v1, . . . ,vL is to maximize

N∑
n=1

L∑
l=1

xT
nulu

T
l xn + yT

nvlv
T
l yn (4)

=

L∑
l=1

uT
l

(
N∑

n=1

xnx
T
n

)
ul + vT

l

(
N∑

n=1

yny
T
n

)
vl (5)

=

L∑
l=1

uT
l XXTul + vT

l Y Y Tvl (6)

=

L∑
l=1

‖ul‖2
XXT

+ ‖vl‖2
Y Y T

(7)

where ‖ · ‖
XXT

and ‖ · ‖
Y Y T

denote the weighted L2 norms
via the positive definite4 matrices XXT and Y Y T . Since
u1, . . . ,uL and v1, . . . ,vL must each be orthonormal, it is
clear that the way to maximize this expression under this
constraint is to choose the eigenvectors of XXT and Y Y T

which, for each matrix, correspond to the L largest eigenvalues
λ1, . . . , λL (thereby yielding λ1+ · · ·+λL for each of the two
pieces of the sum to be maximized). These eigenvectors as the
choice of optimal basis vectors u1, . . . ,uL and v1, . . . ,vL are
often called the first L principal components of each of the
data sets X and Y respectively.

In this case, the two orthonormal bases can fit data inde-
pendently without capturing any correlations between the two
datasets X and Y . In case Y is completely unobservable such
that we do not have access to measurements during fitting, then
we simply cannot use the second set of principal components.
In case we had some way of capturing the correlations between
the two datasets during training, then we could have been able
to use the reconstruction of X to gain some estimate of the
unobservable Y . As it turns out, there is one modified way to
use PCA to capture such correlations called Joint PCA, which
we describe in the next section.

4positive semi-definite if X is not full rank.
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C. Joint (Symmetric-Paired) Principal Component Analysis
If we only allow a single set of linear combination coeffi-

cients A = [a1 · · · aN ], so that the approximations of xn and
yn in the respective bases U and V must always utilize the
same set of expansion coefficients an, then we may rewrite
the energy by concatenating each xn and yn into a single
measurement vector as well as concatenating each ul and vl
into a single basis vector to yield an equivalent energy as
follows.

ε(A,U, V ) =
1

N

N∑
n=1

∥∥∥∥∥xn −
L∑

l=1

ulaln

∥∥∥∥∥
2

+

∥∥∥∥∥yn −
L∑

l=1

vlaln

∥∥∥∥∥
2

(8)

=
1

N

N∑
n=1

∥∥∥∥∥
[
xn

yn

]
−

L∑
l=1

[
ul

vl

]
aln

∥∥∥∥∥
2

(9)

Assuming that these concatenated basis vectors (ul,vl) are
orthonormal, we may then write the orthogonal projections
of the concatenated measurements (xn,yn) as their closest
approximations to obtain

ε∗(U, V ) =
1

N

N∑
n=1

∥∥∥∥∥
[
xn

yn

]
−

L∑
l=1

[
ul

vl

] [
ul

vl

]T [
xn

yn

]∥∥∥∥∥
2

(10)

Again, expanding the squared norms into their constituent
inner product terms (most of which vanish due to the orthonor-
mality) yields

ε∗ =
1

N

N∑
n=1

([
xn

yn

]T [
xn

yn

]
−

L∑
l=1

[
xn

yn

]T [
ul

vl

] [
ul

vl

]T [
xn

yn

])
(11)

Just as before, it is apparent that an equivalent optimization
problem for u1, . . . ,uL and v1, . . . ,vL is to maximize

N∑
n=1

L∑
l=1

[
xn

yn

]T [
ul

vl

] [
ul

vl

]T [
xn

yn

]
(12)

=

L∑
l=1

[
ul

vl

]T [
X
Y

] [
X
Y

]T [
ul

vl

]
(13)

The optimization problem happens when we choose
(u1,v1), . . . , (uL,vL) to be the eigenvectors corresponding

to the L largest eigenvalues of
[
X
Y

] [
X
Y

]T
.

Using this technique, we force the correlations between
two datasets to be captured by the Joint PCA model. This
is useful only in the case the data can influence both the
components during fitting. However, since we impose a single
set of linear coefficients, the model capacity is split between
learning the variations of both the datasets X and Y . In case
Y is completely unobservable during fitting, we get the benefit
of the correlation, but we lose the ability to fit the observable
data X optimally.

III. DEPENDENTLY COUPLED PRINCIPAL COMPONENT
ANALYSIS (DC-PCA)

If we again allow only a single set of linear combination
coefficients A = [a1 · · · aN ], so that the approximations of

xn and yn in the respective bases U and V must always
utilize the same set of expansion coefficients an, but impose
the orthonomal basis U obtained using standard independent
PCA on the data set X , together with the coefficients A that
yield the best approximation of X within this basis (thereby
minimizing the first term below over all choices of U and A,
as in standard PCA), then we may seek the “paired basis” V
(not necessarily orthonormal) that minimizes the second term
below given this choice of U and A.

εX(A,U) =
1

N

N∑
n=1

‖xn − Uan‖2 (14)

εY (A, V ) =
1

N

N∑
n=1

‖yn − V a∗n‖
2 (15)

Differentiating εX in an, and setting the result to zero (to
define the optimal a∗n(U), yields

0 = UT (xn − Ua∗n) = UTxn − UTU︸ ︷︷ ︸
I

a∗n (16)

=⇒ a∗n(U) = UTxn (17)

which, when substituted into εY gives

εY (V ) =
1

N

N∑
n=1

‖yn − V a∗n‖
2

=
1

N

N∑
n=1

yT
nyn − 2xT

nUV
Tyn + xT

nUV
TV UTxn (18)

Now differentiating with respect to the matrix V we obtain

∂εY
∂V

= − 1

N

N∑
n=1

−2yn(a∗n)T + 2V a∗n(a∗n)T (19)

= − 2

N

(
Y AT − V AAT

)
(20)

where

A =
[
a∗1 · · · a∗N

]
=
[
UTx1 · · · UTxN

]
= UTX

Setting this matrix derivative to zero yields

V = Y AT (AAT )−1 = Y XTU
(
UTXXTU

)−1
(21)

If we use the PCA basis U computed for X , then UTU = I,
and XXTU = UΛX , in which ΛX represents the L × L
diagonal matrix with the L largest eigenvalues of XXT along
the diagonal. Plugging those into the above equation yields

V = Y XTU

UTU︸ ︷︷ ︸
I

ΛX

−1 = Y XTUΛX (22)

As such, given a set of expansion coefficients which esti-
mate an observable variable x, we may obtain an optimal pre-
diction (according to our training) for an unobservable variable
y by applying the same weighted linear combination to the
matching basis elements in V . We refer to this combination of
traditional PCA for X and unidirectional correlation analysis
for Y as Dependently Coupled Principal Component Analysis
(DC-PCA) for the paired data sets.
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A. Relationship to CCA

A well known (but symmetric) method that also produces a
paired set of bases for a correlated pair of variables is Canon-
ical Correlation Analysis (CCA). The goal of CCA is to de-
termine bases which maximally correlate linear combinations
of two sets of variables. It can also be used for dimensionality
reduction when the goal within the low dimensional subspaces
is not to optimally approximate coupled sets of measurements
X and Y by orthogonal projection (as in PCA) but rather to
maximize correlation. These are two different objectives that
generally yield two different matched pairs of bases.

Since our asymmetrically paired basis V maximizes the
correlation between linear expansions of its components with
equally weighted expansions of the basis vectors in U , it
seems clear there must be a connection with CCA methods
in the pairing of V with U . This is indeed the case, with
the critical difference that in CCA, correlation is maximized
symmetrically by optimizing over all choices for both bases U
and V . This necessarily results in orthogonal bases for both
U and V (just as in joint PCA which also yields different
but still orthogonal, paired bases U and V ). Here, however,
correlation is maximized only over the choice of V whereas
U is optimized independently of V with the different goal
of maximizing its own variance across the training set X . A
consequence of this asymmetric directionality is that while
the PCA calculated basis U will be orthogonal, its paired
correlated basis V will typically not be. In the exceptional case
that PCA applied to the observable measurements X delivers
the same basis U as CCA does on the paired measurements
X and Y , then the resulting asymmetrically paired basis V
would match that given by CCA as well, and would therefore
be orthogonal.

B. Relationship to conditional PCA

On the other hand and similar to traditional PCA, we note
that the proposed approach can be viewed in a conditional
Bayesian context with caveats. Namely, the basis set of V is
conditioned on the computation of U computed independently
on measurement X (whereas basis V is computed dependently
on Y and U ). This additional consideration and dependency
is a key discerning element between our proposed method
and classical conditional PCA. For example, previous work
adopting the moniker of conditional PCA [23] focuses on
exploiting a PCA basis on measurement Y from measurement
X . This, of course, leads to an orthogonal basis V . Here
the computation of the basis V remains unchanged provided
measurement X and such basis U and V are, in a sense,
decoupled. Compared to our proposed method, this is not the
case. As a result of coupling, the basis V is not necessarily
orthogonal, and this relaxation provides the key advantage
argued in this note. This said, a key part of the future work
is to provide an alternative characterization in the Bayesian
context, and the above is noted to highlight a tacit assumption
for which further study is warranted.

Fig. 2: The “projection of a projection” when applying PLS
methods for inversion problems.

C. Relationship to PLS/PLSR

The strength and uniqueness of the proposed DC-PCA
model lie in its special customization for inversion problems.
On the contrary, those partial least-squares methods (i.e.,
PLSR and CCA) apply to only the predication scenario, which
assumes full access to the measurement X of the observable
part. In practice, however, the low-dimensional representation
of the test data Atest is often obtained by optimizing a loss
function such that the representation maximally captures the
variance of the raw data Dtest. In other words, the represen-
tation always matches the PCA basis. Therefore, applying the
PLS basis for solving the low-dimensional representation (i.e.,
expansion coefficient or score) would result in a situation of
the “projection of a projection,” which can be illustrated by
Fig. 2.

Let us consider the full high-dimensional representation
(which cannot be inverted) of the observable part x as a
volume in the 3D space, which can be projected onto the
PCA-basis plane or the PLSR-basis plane (where inversion
will occur). Under the PCA basis, a (illustrated by the red
projection at the bottom of Fig. 2) is the vector of expansion
coefficients that maximally capture the variance (i.e., best fit)
of the high-dimensional signal x. Under the PLSR basis, xscore
(illustrated by the dark blue projection at the right of Fig. 2)
is the best low-dimensional representation of the full signal x
that leads to the optimal prediction of the unobservable part y.
At the test time of an inversion problem, the evolution of the
low-dimensional representation (i.e., expansion coefficient) is
driven by the effective projection on the PCA plane.

There are two potential methods to exploit PLS-bases in
this class of low dimensional inversion problems, both of
which lead to mismatch. On the one hand, if we use the PCA
basis for X to directly fit the coefficients a and then map
the result to the corresponding PLSR basis prior to estimating
Y , then only the projection x̃score (illustrated by the magenta
projection at the right of Fig. 2) from a to the PLSR basis plane
contributes to the estimate of Y . On the other hand, if we were
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to directly use the PLSR basis for X to compute the PLSR
scores, we would obtain a result x̂score (illustrated by the light
blue projection at the right of Fig. 2) whose projection onto
the PCA basis (the subspace which best captures the signal
itself) most resembles the optimal low-dimensional estimate a.
While tempting to assume, we would not capture the desired
PLSR estimate for X . While this estimate would minimize
the projection error for X itself, we do not have access
to X but rather must invert it by minimizing the residual
of some forward model applied to the raw data. Generally,
inversion through the raw data residual will seek to capture the
largest variations of the unknown signal, subjected to the low
dimensional constraint. The inversion process will be guided
by the projection onto the PCA basis, even if the inversion
itself is constrained to the PLSR basis. Therefore, the desired
PLSR result would effectively be seen during the inversion
process as its projection ã (the purple projection at the bottom
of Fig. 2) onto the PCA basis, which would not optimize the
residual error.

In both cases, therefore, the low-dimensional scores x̃score
and x̂score do not match the PLSR loadings because they
are expected to map the true score xscore back to the high-
dimensional space of observable measurements x and y,
respectively. Unfortunately, the required score xscore for PLSR
is not reachable at test time. Should it be reachable, its
projection on the PCA basis would become ã, which appears
to be different from the actual a. Unless we keep another
pair of PCA bases with which we can reconstruct the high-
dimensional measurements x, PLS methods are not suitable
for inversion problems. While this is conceptually explained by
our prior discussion of Fig. 2, we demonstrate this directly by a
test example in Fig. 3. Here X represents a 2D cross-section
shape and Y a paired 3D teacup shape. A low dimensional
shape inversion is applied to an ideal noiseless silhouette
image using both a PCA and a PLSR basis for X . As
shown on the left, both methods extract a similar shape from
the raw image data. However, the estimated 3D surface (Y
estimate) from PLSR exhibits a higher mismatch against the
ground truth compared to DC-PCA, as shown on the right.
This is precisely because the X estimate that would have
produced a superior PLSR estimate of Y is not captured
during the inversion process. In short, the strategic components
of the low-dimensional estimate of the 2D curve that PLSR
is optimized to leverage (i.e., those of maximum covariance
with Y ) were not properly inverted since the residual image
segmentation error driving the inversion process responded
instead to the independent variance within X itself.

IV. EXPERIMENTAL RESULTS

Although we have presented a general framework applicable
to inversion problems, we illustrate the use and demonstrate
its superiority over PLSR/CCA based methods using a 3D
Cardiac Segmentation problem. There are several uses of PCA
in conjunction with 3D deformable models, particularly for
image segmentation in medical imagery [5]–[8]. Several such
methods use a set of learned shape models to segment medical

Fig. 3: Demonstration of the “projection of a projection” using
2D/3D teacup segmentation example.

images. These methods rely on PCA coefficients for matching
the models to the features observed in grayscale medical
images. In many cases, we are interested in segmenting
multiple structures or organs from medical images. In some
cases, one organ may be easier to segment than others. In
Cardiac Segmentation, the objective is to segment the Left
Ventricle (LV), the Right Ventricle (RV), and Epicardium (EPI)
structures in cardiac CT or MRI images for disease diagnostic
purposes. In Contrast Enhanced CT Angiography (CCTA)
images, the LV generally has good contrast and thus is easier
to segment. Comparatively, the RV has very little contrast and
has wildly changing shapes from patient to patient, and the
Epicardium is also notoriously hard to segment. However, the
shapes are still anatomically coupled: given a particular LV
shape, we can expect the RV and EPI shapes to be correlated
with LV. In such a case, we can use a PCA based shape model
for the LV, which we can fit the grayscale image to segment the
LV and use the DC-PCA framework to estimate the correlated
RV and EPI shapes.

Using the framework developed by the authors in [5],
we learn a shape prior model for heart anatomy. We use
a set of binary masks obtained from the manual tracing of
heart boundaries done by clinical practitioners to develop
models of LV, RV, and EPI. Using a set of these binary
masks, we use PCA to obtain a set of mean 3D shapes and
principal components or principal modes of variations of the
anatomical shapes. Since we have manual segmentations of
all three shapes during training, we can develop independent
models for all three shapes. We can then use a region-based
image segmentation model to fit these models to grayscale
data. However, as mentioned earlier, RV and EPI are difficult
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(a) Joint PCA (symmetrically paired) DICE scores: RV = 0.61, EPI = 0.87

(b) CCA DICE scores: RV = 0.40 EPI = 0.89

(c) PLSR DICE scores: RV = 0.65 EPI = 0.91

(d) DC-PCA DICE scores: RV = 0.75 EPI = 0.93

Fig. 4: Several slices of a 3D Cardiac CT Angiography (CCTA) Image. The blue/green curve is the Left Ventricle (LV),
the yellow curve is the Right Ventricle (RV), and the red curve is the Epicardium (EPI). In (a), LV is segmented using a
joint-PCA-based shape model, and the RV/EPI curves are estimated by applying LV’s coefficients to their respective bases
obtained by using Joint PCA. In (b) and (c), there are two sets of paired bases, LV/RV and LV/EPI. We estimate two sets of
coefficients for LV and apply the same to the respective paired RV and EPI. In (d), DC-PCA uses the independent PCA basis
for LV and applies the same set of coefficients to the respective paired bases to estimate RV and EPI. As indicated by the
DICE scores, DC-PCA does a clearly better job of segmenting RV/EPI based on LV and needs only half the computation and
storage as compared to CCA/PLSR.

to segment due to lack of contrast, hence instead of using
three independent models, we use the DC-PCA technique
(equation 22) to pair LV (observable part) to RV and EPI
(unobservable part) to learn an independent model for LV and
asymmetrically paired models for RV and EPI respectively. We
then estimate a set of weights for the LV principal components
and apply the same weights to the asymmetrically paired RV
and EPI bases (obtained using DC-PCA).

Fig. 4(d) shows the results of applying DC-PCA to the task
of segmenting cardiac images. The Right Ventricle (yellow
curve) and Epicardium (red curve) are simply the asym-
metric estimates of corresponding structures based on the
precise segmentation of the Left Ventricle, which represents

the observable part in this case. Using DC-PCA, we capture
the correlation between the observable (high-confidence) LV
and the other unobservable (low-confidence, low contrast)
structures that are harder to estimate from image data directly.
Using DC-PCA, the results show very plausible segmentations
of the Epicardium and RV just based on LV. We use the
well-known DICE coefficient (also known as F1 score) to
quantitatively measure the segmentation accuracy. DC-PCA
leads to the highest DICE score for both RV and EPI. In
contrast, Fig. 4(a-c) shows the result of using Joint PCA, CCA,
and PLSR for EPI and RV based on LV on the same image.
Clearly, the DC-PCA-based technique captures the correlations
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between LV and RV shapes as well as LV and EPI shapes much
better than other techniques. In the case of CCA and PLSR,
we have to make two estimates of LV using each of the two
separate paired bases (i.e., LV/EPI and LV/RV), leading to
double computational load.

V. CONCLUSIONS

We have presented a novel method of leveraging PCA be-
tween paired datasets in a dependently-coupled manner, which
is optimal with respect to approximation error during training.
This method, which we have coined Dependently Coupled
Principal Component Analysis (DC-PCA), is optimized to
capture both variation and correlation between two sets of
variables when one of the sets is observable, and the other
is not during the model fitting stage. In this paper, we have
presented its special customization for inversion problems.
While we have presented this methodology in the simple linear
framework, kernel-based and other manifold based extensions
naturally follow and will be the subject of future work.
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